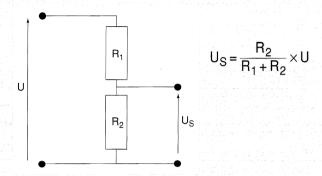
Synthèse

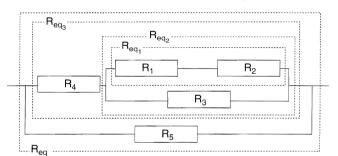
• Résistance équivalente de n résistances identiques (R)

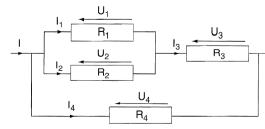

en dérivation

en série

 $R_{eq} = \frac{R}{R}$

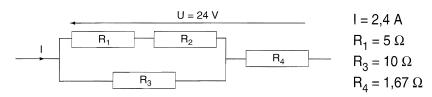
 $R_{eq} = n \times R$


- Résistance équivalente de deux résistances en dérivation : $R_{eq} = \frac{R_1 \times R_2}{R_1 + R_2}$
- Pont diviseur

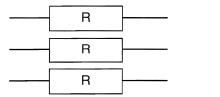


Applications numériques

Donnez les résistances équivalentes du groupement ci-dessous.


- $R_1 = 12 \Omega$
- $R_2 = 8 \Omega$
- $R_3 = 60 \Omega$
- $R_4 = 20 \Omega$
- $R_5 = 35 \Omega$
- 1. R_{eq₁} =
- 2. R_{eq₂} = _____
- 3. R_{eq3} = _____
- **4.** R_{eq} = ______
- Le groupement de résistance ci-dessous comporte uniquement des résistances de $10~\Omega$. La tension aux bornes de R_3 est de 10~V. Calculez la tension aux bornes de chaque résistance, le courant dans chaque résistance et le courant I dans le circuit d'alimentation.

- 1. Calculez I₃:
- **2.** Déterminez I_1 et I_2 :
- 3. Calculez U₁:
- 4. Déterminez U₂ :


- **5.** Calculez U₄ :
- 6. Calculez I₄:
- 7. Calculez I: ...

■ Une tension de 24 V est appliquée au montage ci-dessous.

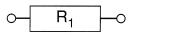
Calculez la valeur de la résistance R₂.

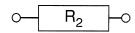
 \blacksquare On dispose de 3 résistances de 10 Ω pour réaliser une résistance de 15 Ω . Comment doit-on les raccorder pour y parvenir? Justifiez votre réponse.

Justification :....

5 Un four électrique comporte deux résistances $R_1 = 35 \Omega$ et $R_2 = 38 \Omega$. Le chauffage du four est commandé par un bouton tournant comportant 5 positions. La tension d'alimentation est 230 V.

Position 0 : arrêt alimentée Position 1 : chauffage « moyen » les deux résistances sont alimentées en série


Position 2 : chauffage « chaud »...... la résistance R₁ fonctionne seule


Position 3 : chauffage « très chaud » les deux résistances sont alimentées en dérivation

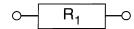
Position 4: grill..... la résistance R2 fonctionne seule

■ 1. Position 1:

a) Complétez le schéma de raccordement des résistances :

b) Calculez la résistance équivalente du montage.

c) Calculez la puissance absorbée par le four.

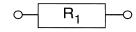

d) Calculez l'intensité absorbée par le four.

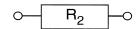
e) Calculez la tension U₁ aux bornes de la résistance R₁.

f) Calculez la tension U₂ aux bornes de la résistance R₂.

■ 2. Position 2:

a) Complétez le schéma de raccordement des résistances :

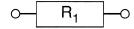

$\circ \vdash R_2 \vdash \lhd$

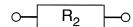

U = 230 V 0

- b) Calculez la puissance absorbée par le four.
- c) Calculez l'intensité absorbée par le four.

■ 3. Position 3:

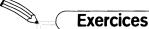
a) Complétez le schéma de raccordement des résistances :

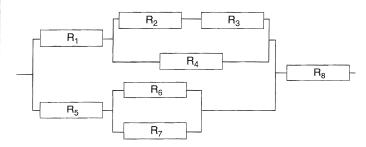




- **b)** Calculez la résistance équivalente du montage.
- c) Calculez la puissance absorbée par le four.
- d) Calculez l'intensité absorbée par le four.
- e) Calculez l'intensité I₁ dans la résistance R₁.
- f) Calculez l'intensité l₂ dans la résistance R₂.

■ 4. Position 4:


a) Complétez le schéma de raccordement des résistances :



- b) Calculez la puissance absorbée par le four.
- c) Calculez l'intensité absorbée par le four.

la résistance équivalente du groupement ci-dessous est $R_{eq}=210~\Omega$. Quelle est la valeur de la résistance R_3 ?

$$R_1 = 143 \Omega$$

 $R_2 = 100 \Omega$
 $R_4 = 480 \Omega$
 $R_5 = 440 \Omega$
 $R_6 = 60 \Omega$
 $R_7 = 120 \Omega$
 $R_8 = 40 \Omega$

Réponse : $R_3 = \dots \Omega$

- 2 Pour chacun des montages ci-dessous, calculez :
 - la résistance équivalente du groupement,
 - le courant dans chaque résistance,
 - la tension aux bornes de chaque résistance.

Schéma	Résistance équivalente	Courant dans chaque résistance	Tension aux bornes de chaque résistance
1 R ₂	_	I _{R1} = mA	U _{R1} = V
R ₁		I _{R2} = mA	U _{R2} =V
$R_1 = R_2 = R_3 = 20 \Omega$ U = 12 V		I _{R3} = mA	U _{R3} =V
2 R ₂ R ₃	$R_{eq} = \dots k\Omega$	l _{R1} = μΑ	U _{R1} = V
- R ₁ - R ₄		I _{R2} = μA	U _{R2} = V
U		$I_{R_3} = \dots \mu A$	U _{R3} =V
$R_1 = 15 \text{ k}\Omega$; $R_2 = 22 \text{ k}\Omega$; $R_3 = 57 \text{ k}\Omega$; $R_4 = 10 \text{ k}\Omega$: $U = 6 \text{ V}$		Ι _{R4} = μΑ	U _{R4} =V
3 R ₁ R ₂	$R_{eq} = \dots \Omega$	I _{R1} = mA	U _{R1} = V
R ₃ R ₄		I _{R2} = mA	U _{R2} =V
U 100 p 700 p 150		I _{R3} = mA	U _{R3} =V
$R_1 = 10 \Omega$; $R_2 = 30 \Omega$; $R_3 = 15 \Omega$; $R_4 = 20 \Omega$ $U = 10 V$		I _{R4} = mA	U _{R4} = V

- $oldsymbol{3}$ On dispose de 4 résistances de 60 Ω supportant chacune un courant de 1 A.
 - 1. Déterminez les groupements mixtes permettant d'obtenir les résistances équivalentes suivantes : R_{eq1} = 240 Ω ; R_{eq2} = 15 Ω ; R_{eq3} = 150 Ω ; R_{eq4} = 80 Ω ; R_{eq5} = 36 Ω .
 - \blacksquare 2. Pour chacun des groupements ci-dessus, calculez la tension pour que le groupement fournisse le maximum de puissance.

Réponses :
$$U_1 = \dots V$$
 $U_2 = \dots V$ $U_3 = \dots V$ $U_4 = \dots V$ $U_5 = \dots V$